Home
Class 12
MATHS
" Consider "f(x)=lim(n rarr oo)(x^(n)-si...

" Consider "f(x)=lim_(n rarr oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n))" for "x>0,x!=1f(1)=0" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

consider f(x)=lim_(x-oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n)) for x>0,x!=1,f(1)=0 then

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(n rarr oo)(sin x)^(2n)

Consider f(x) = lim_(x-oo)(x^n-sinx^n)/(x^n+sinx^n) for x>0,x!=1,f(1)=0 then

Letf(x) = lim_( n to oo) (x^(n)-sin x^(n))/(x^(n)+sin x^(n)) " for" xgt 0, x ne 1,and f(1)=0 Discuss the continuity at x=1.

(2) lim_(n rarr0) (n!sin x)/(n)

lim_(x rarr oo) (x^(n)+a^(n))/(x^(n)-a^(n))= ________.

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is