Home
Class 12
MATHS
There exists a positive real number of x...

There exists a positive real number of `x` satisfying `"cos"(tan^(-1)x)=xdot` Then the value of `cos^(-1)((x^2)/2)i s` `pi/(10)` (b) `pi/5` (c) `(2pi)/5` (d) `(4pi)/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) (d) (7pi)/5

The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

Prove that the least positive value of x, satisfying tan x=x+1, lies in the interval ((pi)/(4),(pi)/(2))

Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)

Prove that the least positive value of x satisfying tan x=x+1, lies in the interval ((pi)/(4),(pi)/(2))

The value of cos(pi)/(5)cos.2(pi)/(5)cos4(pi)/(5)cos8(pi)/(5)=

The number of values of x satisfying cos^(2)x-cot^(2)x=1 for x in[-pi,4 pi], is