Home
Class 12
MATHS
tan^-1(sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a...

`tan^-1``(sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(x)+sqrt(a))/(1-sqrt(xa))) with respect to x

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x+sqrt(1-x)))]=(pi)/(4)-(1)/(2)cos^(-1)x,quad -(1)/(sqrt(2))<=x<=1

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))