Home
Class 12
MATHS
Let alpha, beta, gamma are the roots of ...

Let `alpha, beta, gamma` are the roots of `f(x)-=ax^(3)+bx^(2)+cx+d=0` . Then the condition for roots of `f(x)=0` are in `G.P` is
(A) `ac^(3)=b^(3)d`
(B) `a^(3)c=bd^(3)`
(C) `ac=bd`
(D) `a^(2)c=b^(2)d`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha , beta , gamma are the roots of (x)-=ax^(3)+bx^(2)+cx+d=0 Then The condition for roots of f(x)=0 are in G.Pis

Let alpha,beta,gamma are the roots of f(x)-=ax^(3)+bx^(2)+cx+d=0 .Then The condition for the product of two of the roots is-1 is

Let alpha , beta , gamma are the roots of f(x)=ax^(3)+bx^(2)+cx+d=0 . Then the condition for the product of two of the roots is -1 is (A) c(a+c)+b(b+d)=0 (B) a(a+c)+d(b+d)=0 (C) c(a-c)+b(b-d)=0 (D) a(a-c)+d(b-d)=0

If alpha,beta,gamma be the roots of ax^3+bx^2+cx+d=0 then find the value of suma^2 ,

If alpha,beta,gamma be the roots of ax^3+bx^2+cx+d=0 then find the value of sum 1/alpha .

If alpha,beta,gamma are the roots of f(x)=x^(3)+ax^(2)+bx+c=0 then the equation whose roots are alpha beta,beta gamma,gamma alpha is

The condition that the roots of ax^(3)+bx^(2)+cx+d =0 may be in G.P is

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

If alpha,beta,gamma are the roots of the equation ax^(3)+bx^(2)+cx+d=0 then find the value of sum(alpha^(2)(beta+gamma))

If 1,2,3 and 4 are the roots of the equation x^(4)+ax^(3)+bx^(2)+cx+d=0, then a+2b+c=