Home
Class 12
MATHS
3.Two points P and Q are lying on the cu...

3.Two points P and Q are lying on the curve `y=log_(2)(x+3)` in `xy` plane such that `vec (OP)` .`hat i=1` and ,`vec OQ*hat j=3` ,then the value of `|vec (OQ)-2vec (OP)|` is (where,"O" is the origin). 1) `sqrt(6)` 2) `sqrt(7)` 3) `sqrt(8)` 4) `sqrt(10)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If two point P and Q are on the curve y=2^(x+2) , such that vec(OP).hati=-1 and vec(OQ).hati=2 , where hati is a unit vector along the x - axis, then |vec(OQ)-4vec(OP)| is equal to

Let P and Q be two points in the xy plane on the curve y=x^(7)+3x^(5)-5x^(3)+2x+5 such that vec(OP).hat i=lambda and vec(OQ).hat i=-lambda then magnitude of vec(OP)+vec(OQ) is

If P and Q are two given points on the curve y=x+(1)/(x) such that vec OP.hat i=1 and vec OQ*hat i=-1 where i is a unit vector along x - axis then the length of the vector 3vec OP+2vec OQ is (A) sqrt(5) (B) 3sqrt(5)(C)2sqrt(5)(D)5sqrt(5)

Let P and Q are two points in the xy plane on the curve y = x^(11) - 2x^(7) + 7x^(3) + 11x + 6 such that vec(OP) cdot hati = 5, vec(OQ) cdot hati = -5 , then the magnitude of vec(OP) + vec(OQ) is

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec a=2hat i+2hat j-3hat k,vec b=hat i-2hat j+2hat k,vec c=4hat i+3hat j+3hat k then find the value of |vec a+2vec b+2vec c|

If vec a and vec b are vectors in space given by vec a= (hat i - 2vec j)/sqrt5 and vec b = (2 hat i+ hat j + 3 hat k)/sqrt14 then the value of (2 vec a+ vec b) is

(1)/(sqrt(10))(3hat j+hat k) and vec b=(2hat i+3hat j-6hat k) then the value of (2vec a-vec b)*[(vec a xxvec b)xx(vec a+2vec b)] is:

A line passes through the point A(hat i+2hat j+3hat k) and is parallel to the vector vec V=(hat i+hat j-hat k) The shortest distance from the origin,of the line is (A) sqrt(2)(B)sqrt(4)(C)sqrt(5) (D) sqrt(6)

If vec(A) = 3 hat(i) - 4 hat(j) and vec(B) = 2 hat(i) + 16 hat(j) then the magnitude and direction of vec(A) + vec(B) will be