Home
Class 12
MATHS
into^pi x^2cosxdc...

`int_o^pi x^2cosxdc`

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the following function (a) int_(o)^(2) 2t dt (b) int _(pi//6)^(pi//3) sin x dx (c) int _(4)^(10)(dx)/(x) (d) int _(o)^(pi) cos x dx (e) int _(1) ^(2)(2t -4) dt

Integrate the following function (a) int_(o)^(2) 2t dt (b) int _(pi//6)^(pi//3) sin x dx (c) int _(4)^(10)(dx)/(x) (d) int _(o)^(pi) cos x dx (e) int _(1) ^(2)(2t -4) dt

find int_o^(pi/4) sinx dx =?

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

int_(-(pi)/(4))^((pi)/(4))(2 pi+sin2 pi x)/(2-cos2x)dx

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

If f(x) = f(pi + e - x) and int_e^(pi) f(x) dx = 2/(e + pi) , then int_e^(pi) xf(x) dx is equal to

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :

If f(x)=f(pi+e-x) and int_e^pif(x)dx=2/(e+pi), then int_e^pi xf(x)dx is equal to