Home
Class 12
MATHS
If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), wh...

If `z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y),` where `x y<0,` then the possible values of `z` is (are) `(8pi)/(10)` (b) `(7pi)/(10)` (c) `(9pi)/(10)` (d) `(21pi)/(20)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=sec^(-1)(x+(1)/(x))+sec^(-1)(y+(1)/(y)) where xy<0, then the possible value of z is (are)

1-(dy)/(dx)=sec(x-y)," where "x-y=u

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1) . 1/x + cos ^(-1) . 1/y .

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) then (dy)/(dx) is equal to :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, where -1<=x,y,z<=1, then find the value of x^(2)+y^(2)+z^(2)+2xyz

If sec^(-1)x=cos ec^(-1)y, then cos^(-1)((1)/(x))=cos^(-1)((1)/(y))=

The area of the closed region bounded by y=sec^(-1)x, y ="cosec"^(-1)x and the line x-1=0 is