Home
Class 12
MATHS
If -1< x < 0 , then cos^(-1)x is e...

If `-1< x < 0` , then `cos^(-1)x` is equal to (a) `sec^(-1)(1/ x)` (b) `pi-sin^(-1)sqrt(1+x^2)` (c) `pi+tan^(-1)(x/(sqrt(1-x^2)))` (d) `cot^(-1)(x/(sqrt(1-x^2)))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

int sqrt((x)/(1-x))dx is equal to sin^(-1)sqrt(x)+C(b)sin^(-1){sqrt(x)-sqrt(x(1-x))}+C(c)sin^(-1){sqrt(x(1-x)}+C(d))sin^(-1)sqrt(x)-sqrt(x(1-x))+C

d/(dx)(sin^(-1)x+cos^(-1)x) is equal to : (A) (1)/(sqrt(1-x^(2))), (B) (2)/(sqrt(1-x^(2))), (C) 0 (D) sqrt(1-x^(2))

Differential coefficient of sec(tan^(-1)x) is (x)/(1+x^(2))( b) x sqrt(1+x^(2))(c)(1)/(sqrt(1+x^(2))) (d) (x)/(sqrt(1+x^(2)))

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

tan(cos^(-1)x) is equal to (x)/(1+x^(2)) b.(sqrt(1+x^(2)))/(x) c.(sqrt(1-x^(2)))/(x) d.sqrt(1-2x)