Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=pi/2 and sin2x=c...

If `sin^(-1)x+sin^(-1)y=pi/2` and `sin2x=cos2y ,` then (a) `x=pi/8+sqrt(1/2-(pi^2)/(64))` (b)`y= sqrt(1/2-(pi^2)/(64))-pi/(12)` (c)`x=pi/(12)+sqrt(1/2-(pi^2)/(64))` (d)`y=sqrt(1/2-(pi^2)/(64))-pi/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that :cos((pi)/(12))-sin((pi)/(12))=(1)/(sqrt(2))

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If (dy)/(dx) +y sec x=tan x," then (sqrt(2) +1) y((pi)/(4)) - y(0)=, (A) sqrt(2) - (pi)/(4) (B) sqrt(2) + (pi)/(4) (C) sqrt(2) - (pi)/(2) (D) sqrt(2) + (pi)/(2)

(cos pi) / (12) - (sin pi) / (12) = (1) / (sqrt (2))

If sin^(-1)(tan(pi)/4)-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x is equal to

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If f(x)=sqrt(1+cos^(2)(x^(2))), then f'((sqrt(pi))/(2)) is (sqrt(pi))/(6)(b)-sqrt(pi/6)1/sqrt(6)(d)pi/sqrt(6)