Home
Class 12
MATHS
The sum of the solution of the equation ...

The sum of the solution of the equation `2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2` is 0 (b) `-1` (c) `1` (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

Number of integral solutions of the equation 2sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=3(pi)/(2) is

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is

The number of solutions of the equation cos^(-1)((1+x^(2))/(2x))-cos^(-1)x=(pi)/(2)+sin^(-1)x is 0(b)1(c)2(d)3

The sum of all the solution(s) of the equation sin^(-1)2x=cos^(-1)x is 0 (2) 2/(sqrt(5)) (3) 1/(sqrt(5)) (4) (-1)/(sqrt(5))

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sin x),-pi<=x<=pi is 0(b)1(c)2(d) infinite