Home
Class 12
MATHS
If sin^(-1)x=theta+betaa n dsin^(-1)y=th...

If `sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta,` then `1+x y` is equal to `sin^2theta+sin^2beta` (b) `sin^2theta+cos^2beta` `cos^2theta+cos^2theta` (d) `cos^2theta+sin^2beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

prove that- sin^2theta/cos^2theta+cos^2theta/sin^2theta=1/ (sin^2thetacos^2theta)-2

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that: cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta