Home
Class 12
MATHS
The value of (lim)(nvecoo)(tan^(-1)x))) ...

The value of `(lim)_(nvecoo)(tan^(-1)x)))` is equal to `-1` (b) `pi/2` (c) `-1/(sqrt(2))` (d) `1/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr1)((4)/(pi)tan^(-1)x)^(1/(x^(2)-1)) equal to

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to

The value of lim_(x rarr(1)/(sqrt(2)))(x-cos(sin^(-1)x))/(1-tan(sin^(-1)x)) is -(1)/(sqrt(2)) (b) (1)/(sqrt(2)) (c) sqrt(2)(d)-sqrt(2)

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

tan(cos^(-1)x) is equal to (x)/(1+x^(2)) b.(sqrt(1+x^(2)))/(x) c.(sqrt(1-x^(2)))/(x) d.sqrt(1-2x)

The value of (lim)_(x->0)(sqrt(2)-sqrt(1+cos x))/(sin^2x) is 1/(2sqrt(2)) b. 1/(8sqrt(2)) c. 1/(4sqrt(2))\ d. -1/(4sqrt(2))

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

If y=sec(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: (1)/(sqrt(2))(b)(1)/(2)(c)1(d)sqrt(2)

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals