Home
Class 12
MATHS
The number of real solutions of tan^(-1)...

The number of real solutions of `tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2` is a.`z ero` b. one`` c. two d. infinite

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2) is a.zero b.one c.two d.infinite

The number of solution of tan^-1(sqrt(x(x-1)))+sin^-1(sqrt(x^2+x+1))=pi/2 are

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

The number of real solutions of the equations x+sqrt(x^(2)+sqrt(x^(3)+1))=1

The number of real solution of the equation tan^(-1)sqrt(x^(2)-3x+7)+cos^(-1)sqrt(4x^(2)-x+3)=pi is

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :