Home
Class 12
MATHS
The number of real solutions of the equa...

The number of real solutions of the equation `sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx),-pilt=xlt=pi` is 0 (b) 1 (c) 2 (d) infinite

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx),-10pilexle10pi is/are

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sin x),-pi<=x<=pi is 0(b)1(c)2(d) infinite

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real solutions of the equation sqrt(1+cos2x) = sqrt(2)cos^(-1)(cosx) in [pi/2,pi] is

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of real solutions of the equation sin^(-1)((1+x^(2))/(2x))=(pi)/(2)sec(x-1) is

The number of non zero roots of the equation sqrt(sin x)=cos^(-1)(cos x) in (0,2 pi)

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :