Home
Class 12
MATHS
lf |(logx y, logy z, logz y), (logyz, l...

lf `|(log_x y, log_y z, log_z y), (log_yz, log_zx, log_xy), (log_zx, log_xy, log_yz)| = 0 , x, y, z in R , x, y, z > 1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |(log x, log y, logz),(log 2x, log2y, log2z),(log3x, log3y,log3z)|=0

|(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,log_(z)y,1)|=

What is the value of abs((1,log_x y, log_x z),(log_y x,1,log_y z),(log_z x,log_z y, 1)) ?

Find the value of |(1,log_(x) y,log_(x) z),(log_(y) x,1,log_(y) z),(log_(z) x,log_(z) y,1)| if x,y,z ne 1

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|

Delta=|[log x ,log y, log z],[log 2 x, log 2 y, log 2 z],[log 3 x, log 3 y, log 3 z ]|=

The value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,lo_(z)y,1)|=

Prove that , |[1,log_x^y,log_x^z],[log_y^x,1,log_y^z],[log_z^x,log_z^y,1]|=0