Home
Class 12
MATHS
The value of sin^(-1)[xsqrt(1-x)-sqrt(x)...

The value of `sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]` is equal to

A

`sin^(-1) x + sin^(-1) sqrtx`

B

`sin^(-1) x - sin^(-1) sqrtx`

C

`sin^(-1) sqrtx - sin^(-1) x`

D

none of these

Text Solution

AI Generated Solution

To solve the problem \( \sin^{-1}\left[x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^2}\right] \), we will follow these steps: ### Step 1: Substitute Variables Let \( x = \sin \theta \). Then, \( \sqrt{1 - x} = \sqrt{1 - \sin \theta} = \cos \theta \) and \( \sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta \). ### Step 2: Rewrite the Expression Now we can rewrite the expression inside the inverse sine: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

If the value of underset(x to 0)lim (sqrt(2+x)-sqrt2)/(x)" is equal to "1/(a sqrt2) then 'a' equals