Home
Class 12
MATHS
Prove that 2tan^(-1)(cos e ctan^(-1)x-ta...

Prove that `2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x)=tan^(-1)x(x!=0)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .