Home
Class 12
MATHS
If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqr...

If `cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x ,` then `sinx` is `tan^2alpha/2` (b) `cot^2alpha/2` (c) `tan^2alpha` (d) `cotalpha/2`

Text Solution

AI Generated Solution

To solve the equation \( \cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x \) and find \( \sin x \), we can follow these steps: ### Step 1: Set up the equation Let \( \theta = \cot^{-1}(\sqrt{\cos \alpha}) \). Then, we have: \[ \cot \theta = \sqrt{\cos \alpha} \] From this, we can find \( \tan \theta \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

cot_(sin x)^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to

Knowledge Check

  • cot^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x , then six x is equal to

    A
    `tan^2 (alpha/2)`
    B
    `cot^2 (alpha/2)`
    C
    `tan alpha`
    D
    `cot(alpha/2)`
  • If cot^(-1) sqrt( cos alpha)- tan^(-1) sqrt(cos alpha) =x , then sin x equals

    A
    `tan^(2)""((alpha)/(2))`
    B
    `cot^(2) ((alpha)/(2))`
    C
    `tan alpha`
    D
    `cot ((alpha)/(2))`
  • cot^(-1)((alpha)/(2))-tan^(-1)(sqrt(cosalpha))=x , then sin x is equal to

    A
    `tan^(2)((alpha)/(2))`
    B
    `cot^(2)((alpha)/(2))`
    C
    `tanalpha`
    D
    `cot((alpha)/(2))`
  • Similar Questions

    Explore conceptually related problems

    cot^-1[(cot alpha)^(1/2)]+tan^-1[(cotalpha)^(1/2)]=x then sin x= (A) 1 (B) cot^2(alpha/2) (C) tanalpha (D) cot(alpha/2)

    If quad cot^(-1)sqrt(tan alpha)-tan^(-1)sqrt(tan alpha), then tan ((pi)/(4),(u)/(2))i sequa<0 (a) sqrt(tan alpha)(b)sqrt(cot alpha)(c)tan alpha(d)cot alpha

    cot^(-1)[(cos alpha)^(1//2)]-tan^(-1)[(cos alpha)^(1//2)]=x then sin x =

    cot^(-1)[(cos alpha)^(1//2)]- tan^(-1) [(cos alpha)^(1//2)] =x , then sin x=

    If u = cot^(-1)sqrt(tan alpha) - tan^(-1) sqrt(tan alpha) , then tan(pi/4-u/2) =