Home
Class 12
MATHS
Let f be a positive function. Let I1=...

Let `f` be a positive function. Let `I_1=int_(1-k)^k xf([x(1-x)])dx ,` `I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s` 2 (b) `k` (c) `1/2` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a positive function. Let I_(1)=int_(1-k)^(k)x f[x(1-x)]dx , I_(2)=int_(1-k)^(k)f[x(1-x)]dx , where 2k-1gt0 . Then (I_(1))/(I_(2)) is

Let f be a positive function. If I_1 = int_(1-k)^k x f[x(1-x)]\ dx and I_2 = int_(1-k)^k f[x(1-x)]\ dx, where 2k-1 gt 0. Then I_1/I_2 is

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

Let f be a positive function.Let I_(1)=int_(1-k)^(k)xf([x(1-x)])dxI_(2)=int_(1-k)^(k)f[x(1-x)]dx, where 2k-1>0. Then (I_(1))/(I_(2))is 2(b) k(c)(1)/(2) (d) 1

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then