Home
Class 12
MATHS
The sum of series sec^(-1)sqrt(2)+sec^(-...

The sum of series `sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2))` is `tan^(-1)1` (b) `n` `tan^(-1)(n+1)` (d) `tan^(-1)(n-1)`

Text Solution

Verified by Experts

Let `S = sec^-1sqrt2+sec^-1(sqrt10/3)+sec^-1(sqrt50/7)+...+sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2)`
Here, `T_n = sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2)`
Let `sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2) = theta`
`=>sec theta =sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2`
`=>sec^2theta = ((n^2+1)(n^2-2n+2))/(n^2-n+1)^2`
`=>sec^2theta = ((n^2+1)(n^2+1-2n+1))/(n^2-n+1)^2`
`=>1+tan^2theta = ((n^2+1)(n^2+1)-2n(n^2+1)+n^2+1)/(n^2-n+1)^2`
`=>1+tan^2theta = ((n^2+1-n)^2+1)/(n^2-n+1)^2`
...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the sum csc^(-1)sqrt(10)+csc^(-1)sqrt(50)+csc^(-1)sqrt(170)+...+csc^(-1)sqrt((n^(2)+1)(n^(2)+2n+2))

tan^(-1)(sqrt(3))+sec^(-1)(-2) =

tan^(-1)sqrt(3)-sec^(-1)(-2)

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))

The sum of the infinte series sin^(-1)((1)/(sqrt(2)))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+...sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

(tan ^(-1) (sqrt(3))-sec ^(-1)(-2))/("cosec"^(-1)(-sqrt(2))+cos^(-1)""(-(1)/(2)))=

(tan^(-1)(sqrt3)-sec^(-1)(-2))/(cosec^(-1)(-sqrt2)+cos^(-1)(-(1)/(2))) is equal to

tan^(-1)n+cot^(-1)(n+1)=tan^(-1)(n^(2)+n+1)

(tan ^ (- 1) (sqrt (3)) - sec ^ (- 1) (- 2)) / (cos ec ^ (- 1) (- sqrt (2)) + cos ^ (- 1) (- (1) / (2))) =

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Solved Examples And Exercises
  1. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  2. tan(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x),x!=0, is equal to x (b)...

    Text Solution

    |

  3. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  4. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  5. If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-2)((2x)/(...

    Text Solution

    |

  6. If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x ...

    Text Solution

    |

  7. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  8. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  9. Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

    Text Solution

    |

  10. Solve tan^(-1)x+sin^(-1)x=tan^(-1)2xdot

    Text Solution

    |

  11. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  12. If alpha=3sin^-1(6/11) and beta=3cos^-1(4/9), where the inverse trigon...

    Text Solution

    |

  13. Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0

    Text Solution

    |

  14. Find the value of sin^(-1)x+sin^(-1)1/x+cos^(-1)x+cos^(-1)1/xdot

    Text Solution

    |

  15. Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset...

    Text Solution

    |

  16. If sin^(-1)xi in [0,1]AAi=1,2,3, .28 then find the maximum value of s...

    Text Solution

    |

  17. Prove that cos^(-1)4/5 + cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

    Text Solution

    |

  18. If two angles of a triangle are tan^(-1)(2)a n dtan^(-1)(3), then find...

    Text Solution

    |

  19. Find the value of tan^(-1)(1/2tan2A)+tan^(-1)(cotA)+tan^(-1)(cot^3A),f...

    Text Solution

    |

  20. Simplify (3sin2alpha)/(5+3cos2alpha)+tan^(-1)(tan(alpha/4)),where -pi/...

    Text Solution

    |