Home
Class 12
MATHS
Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,...

Prove that: `tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that tan^(-1)x+cot^(-1)x=pi/2

Prove that tan^(-1) x + tan ^(-1). 1/x = {{:(pi//2", if " x gt 0),(-pi//2", if "x lt 0 ):} .

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Prove that tan^(-1)(cot x)+cot^(-1)(tan x)=pi-2x

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0

prove that: 2 tan ^(-1)x =(1)/(3) tan^(-1).(1)/( 7) = (pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solve for x : tan^(-1)(x/2)+tan^(-1)(x/3)=pi/4 , 0