Home
Class 12
MATHS
If sin^(-1)xi in [0,1]AAi=1,2,3, .28 th...

If `sin^(-1)x_i in [0,1]AAi=1,2,3, .28` then find the maximum value of `sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+` `sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)`

Text Solution

Verified by Experts

`E = sqrt(sin^(-1)x_(1)) sqrt(cos^(-1) x_(2)) + sqrt(sin^(-1) x_(2)) sqrt(cos^(-1) x_(3)) + sqrt(sin^(-1) x_(3)) sqrt(cos^(-1) x_(4)) +...+ sqrt(sin^(-1) x_(28)) sqrt(cos^(-1) x_(1))`
`x_(i) in [0,1] AA i = 1, 2, 3, .., 28`
`:. sin^(-1) x_(i) gt 0`
Now using `A.M. ge G.M`., we have
`(a^(2) + b^(2))/(2) ge ab`, where `a, b gt 0`
`:. sqrt(sin^(-1) x_(1)) sqrt(cos^(-1) x_(2)) le ((sin^(-1) x_(1) + cos^(-1) x_(2))/(2))`
`{:(sqrt(sin^(-1) x_(2)) sqrt(cos^(-1) x_(3)) lt ((sin^(-1) x_(2) + cos^(-1) x_(3))/(2))),(vdots" "vdots),(sqrt(sin^(-1) x_(28)) sqrt(cos^(-1) x_(1)) le ((sin^(-1) x_(28) + cos^(-1) x_(1))/(2))):}`
On adding all, we get
`E le underset(i =1)overset(28)sum (sin^(-1) x_(i) + cos^(-1) x_(i))/(2)`
`:. E le (28((pi)/(2)))/(2)`
`:. E_("max") = 7 pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Find :int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx,x in[0,1]

The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

2sin^(2)x+sqrt(3)cos x+1=0

Evaluate int(sin^-1sqrt (x)-cos^-1sqrt (x))/(sin^-1sqrt (x)+cos^-1sqrt (x))dx

The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal to

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))