Home
Class 12
MATHS
If I1=int0^(pi/2)x/sinxdx and I2=int0^1(...

If `I_1=int_0^(pi/2)x/sinxdx` and `I_2=int_0^1(tan^(-1)x)/xdx`, then `(I_1)/(I_2)=` (A) 1 (B) `1/2` (C) 2 (D) `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

If I_(1)int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then,

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

int_0^1 (tan^-1x)/xdx-1/2int_0^(pi/2) t/sint dt has the value (A) -1 (B) 1 (C) 2 (D) 0