Home
Class 12
MATHS
sum(r=1)^nsin^(-1)((sqrt(r)-sqrt(r-1))/(...

`sum_(r=1)^nsin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1))))`is equal to
(a) `tan^(-1)(sqrt(n))-pi/4`
(b)`tan^(-1)(sqrt(n+1))-pi/4`
(c)`tan^(-1)(sqrt(n))`
(d) `tan^(-1)(sqrt(n)+1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

tan^-1 (sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^(-1)(sqrt(2)/2) =

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to:

sum_(n=1)^oo sin^-1( (sqrt(n)-(sqrt(n-1)))/(sqrt((n)(n+1)) )= (A) pi/4 (B) pi/2 (C) - pi/3 (D) pi/3

The value of sum_(r=1)^(n)(1)/(sqrt(a+rx)+sqrt(a+(r-1)x)) is -

Sum of series sum_(r=1)^(n)sin^(-1)[(2r+1)/(r(r+1)(sqrt(r^(2)+2r)+sqrt(r^(2)-1)))]