Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2` is 2 (b) 3 (c) 1 (d) 0

A

2

B

3

C

1

D

0

Text Solution

Verified by Experts

`tan^(-1) (1 + x) + tan^(-1) (1- x) = (pi)/(2)`
or `tan^(-1) (1 + x) = (pi)/(2) - tan^(-1) (1 -x)`
`= cot^(-1) (1 -x)`
`= tan^(-1) ((1)/(1 -x))`
or `1 + x = (1)/(1 -x)`
or `1 - x^(2) = 1`
or `x = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3