Home
Class 11
MATHS
If omega is complex cube root of that 1/...

If `omega` is complex cube root of that `1/(a+omega)+1/(b+omega)+1/(c+omega)=2omega^2` and `1/(a+omega^2)+1/(b+omega^2)+1/(c+omega^2)=2omega` then the value of `1/(a+1)+1/(b+1)+1/(c+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega_(1) is complex cube root of that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2 omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2 omega then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1)=

If omega ne 1 is a cube root of unity such that : (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2omega , then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1) is :

if omega and omega^(2) are the nonreal cube roots of unity and [1/(a+omega)]+[1/(b+omega)]+[1/(c+omega)]=2 omega^(2) and [1/(a+omega)^(2)]+[1/(b+omega)^(2)]+[1/(c+omega)^(2)]=2 omega then find the value of [1/(a+1)]+[1/(b+1)]+[1/(c+1)]

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//a+omega^2]+[1//b+omega^2]+[1//c+omega^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

If omega is a complex cube root of unity, then (1+omega-(omega)^2)^3 - (1-omega+(omega)^2)^3 =