Home
Class 12
MATHS
Solve the equation sqrt(|sin^(-1)|"cosx"...

Solve the equation `sqrt(|sin^(-1)|"cosx"||+|cos^(-1)|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify tan^(-1).(cosx/(1-sinx))(-pi)/2 lt x lt pi/2

Solve the equation sin^2x(tanx+1)=3sinx(cosx-sinx)+3 .

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

Evaluate int_(0)^(pi//3)|(sin^(-1)sinx)/(cos^(-1)cosx)|dx

Evaluate int_(0)^(pi//3)|(sin^(-1)sinx)/(cos^(-1)cosx)|dx

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is