Home
Class 12
MATHS
If tan^(-1)y=4tan^(-1)x(|x|<tanpi/8) , f...

If `tan^(-1)y=4tan^(-1)x(|x|

Text Solution

Verified by Experts

We have `tan^(-1) y = 4 tan^(-1) x`
`rArr tan^(-1) y = tan^(-1) (2x)/(1 -x^(2))` (as `|x| lt1`)
`= tan^(-1). ((4 x)/(1 -x^(2)))/(1 - (4x^(2))/((1 - x^(2))^(2)))`
`= tan^(-1). (4 x (1 - x^(2)))/(x^(4) - 6x^(2) + 1) ("as" |(2x)/(1 -x^(2))| lt 1)`
or `y = (4x (1 - x^(2)))/(x^(4) - 6x^(2) + 1)`
If `x = tan. (pi)/(8)`
`rArr tan^(-1) y = 4 tan^(-1) x = (pi)/(2)`
`rArr y rarr oo`
`rArr x^(4) 6x^(2) + 1 = 0`
Hence, `tan.(pi)/(8)` is a root of `x^(4) - 6x^(2) + 1 = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)y=4tan^(-1)x , then 1//y is zero for

If tan^(-1)y=4tan^(-1)x, theny is infinite if

If tan^(-1)y=4tan^(-1)x then find the algebraic relation between x and y

If tan^(-1)x+tan^(-1)(1-x)=tan^(-1)(4/3) then x=

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

If tan^(-1)x+tan^(-1)y=(4 pi)/(5), find cot^(-1)x+cot^(-1)y

If tan^(-1)x+tan^(-1)y=(pi)/(4) , and the value of xy<1 ,then show that x+y+xy=1 .