Home
Class 12
MATHS
intx(e^(tan^(- 1)x^2))/(x^4+1) dx equals...

`intx(e^(tan^(- 1)x^2))/(x^4+1)` dx equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(tan-1)x((1+x+x^2)/(1+x^2))dx equals :

intxe^(2x)(1+x)dx equals

The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

intx^(51)(tan^(- 1)x+cot^(- 1)x)dx=

intx^(51)(tan^(- 1)x+cot^(- 1)x)dx=

intx^(2)e^(x^(3))dx equals