Home
Class 12
MATHS
Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-...

Prove that `2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)(2xsqrt(1-x^(2)))

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

The value of x for which 2 sin^(-1)x =sin^(-1)(2xsqrt(1-x^(2))) is

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx

Solve the equation 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))