Home
Class 12
MATHS
If vec u , vec va n d vec w are three n...

If ` vec u , vec va n d vec w` are three non-cop0lanar vectors, then prove that `( vec u+ vec v- vec w)dot( vec u- vec v)xx( vec v- vec w)= vec udot vec vdotxx vec w`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec u , vec v and vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . vec v xx vec w

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . (vec v xx vec w)

If vec u,vec v and vec w are three non-copolanar vectors,then prove that (vec u+vec v-vec w)*(vec u-vec v)xx(vec v-vec w)=vec u*vec v*xxvec w

If vec u, vec nu, vec w are three non-coplanar vectors, then (vec u + vec nu - vec w).[(vec u - vec nu) xx (vec nu - vec w)] =

If a ,ba n dc are non-cop0lanar vector, then that prove |( vec adot vec d)( vec bxx vec c)+( vec bdot vec d)( vec cxx vec a)+( vecc dot vec d)( vec axx vec b)| is independent of d ,w h e r ee is a unit vector.