Home
Class 12
MATHS
A normal to the parabola y^(2)=4ax with ...

A normal to the parabola `y^(2)=4ax` with slope m touches the rectangular hyperbola `x^(2)-y^(2)=a^(2)` if
1) `m^(6)+4m^(4)-3m^(2)+1=0` 2) `m^(6)-4m^(4)+3m^(2)-1=0`
3) `m^(6)-4m^(4)-3m^(2)+1=0` 4) none

Promotional Banner

Similar Questions

Explore conceptually related problems

If a normal of slope m to the parabola y^(2)=4ax touches the hyperbola x^(2)-y^(2)=a^(2), then

Equation of normal to the parabola y^(2)=4ax having slope m is

The condition that a straight line with slope m will be normal to parabola y^(2)=4ax as well as a tangent to rectangular hyperbola x^(2)-y^(2)=a^(2) is

If A line with slope m touches the hyperbola (x^(2))/(25)-(y^(2))/(4) =1 and the parablola y^(2)=20x then the value of 25m^(4)-4m^(2) is equal to

If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1 =?

The slope of common tangents to x^(2)+4y^(2)=4 and x^(2)+y^(2)=3 is m ,then m^(2) is

Factorise : 4m^(3)n^(2) +12 m^(2)n^(2)+18 m^(4)n^(3)

If m+ (1)/(m-2)=0 , find m^(5) + m^(4) + m^(3) + m^(2)+ m+1 = ?

Solve : (5m^(2)+3m-4)+(3m^(2)+5m+7)-(2m^(2)-4m)

Divide: 9m^(5)+12m^(4)-6m^(2) by 3m^(2)24x^(3)y+20x^(2)y^(2)-4xy by 2xy