Home
Class 12
MATHS
int1/(a^2-b^2cos^2x)dx(a>b)=1/(asqrt(a^2...

`int1/(a^2-b^2cos^2x)dx(a>b)=1/(asqrt(a^2-b^2))tan^(-1)[(atanx)/(sqrt(a^2-b^2))]+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(a^(2)-b^(2)cos^(2)x)dx(a>b)=(1)/(a sqrt(a^(2)-b^(2)))tan^(-1)[(a tan x)/(sqrt(a^(2)-b^(2)))]+c

int 1/sqrt(a^2+b^2x^2) dx

int(1)/(1+cos^(2)x)dx=(1)/(sqrt(2))tan^(-1)((tan x)/(sqrt(2)))+c

" "int(1)/(a+b cos^(2)x)dx

int(1)/((a+b cos x)^(2))dx,a>b

int(1)/(sqrt(a^(2)-b^(2)x^(2)))dx=

int(1)/(sqrt(a^(2)+b^(2)x^(2)))dx

int(1)/(x sqrt(a^(2)x^(2)-b^(2)))dx=

int_( then )^( If )(sin2x-cos2x)dx=(1)/(sqrt(2))sin(2x-a)+b

If int(dx)/(cos2x+3sin^(2)x)=(1)/(a)tan^(-1)(b tanx)+c, then ab=