Home
Class 12
MATHS
Evaluate ("lim")(nvecoo){cos(x/2)cos(x/4...

Evaluate `("lim")_(nvecoo){cos(x/2)cos(x/4)cos(x/8) cos(x/(2^n))}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

8.sin(x/8). cos (x/2).cos (x/4).cos (x/8) =

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

The value of lim_(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(n))) is equal to

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

Evaluate lim_(xto0)(1-cos2x)/(1-cos4x)