Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi ,th...

If `cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi` ,then the value of `x^(2012),+y^(2012)+z^(2012)+(6)/(x^(2011)+y^(2011)+z^(2011))` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3 pi, then xy+yz+zx is equal to

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, where -1<=x,y,z<=1, then find the value of x^(2)+y^(2)+z^(2)+2xyz

If cos^(-1)x + cos^(-1)y - cos^(-1) z = 0 , then show that x^(2) + y^(2) + z^(2) - 2xyz = 1