Home
Class 11
MATHS
If an angle 'r' is divided in two parts ...

If an angle 'r' is divided in two parts A and B such that A-B=x and `tan A: tan B=K:1` then the value of sin x is
1) `(k+1)/(k-1)sin r,` 2) `(k)/(k+1)sin r`3) `(k-1)/(k+1)sin r` 4) None

Promotional Banner

Similar Questions

Explore conceptually related problems

If an angle theta is divided into two parts A and B such that A-B=x and tan A:tan B=k:1, then the value of sink is

If an angle alpha is divided into two parts A&B such that A-B=x and tan A:tan B=k:1 Then the value of sin x is (A) (k+1)/(k-1)sin alpha (k)/(k+1)sin alpha (C) (k-1)/(k+1)sin alpha (D) tan alpha

A+B=C and tan A=k tan B, then prove that sin(A-B)=(k-1)/(k+1)sin C

The value of sum_(k=1)^(5)(1)/(sin(k+1)sin(k+2)) is

If k + 1 = sec^2A (1 - sin A) (1 + sin A), then the value of k is:

If an angle alpha be divided into two parts such that the ratio of tangents of the parts is K. If x be the difference between the two parts , then prove that sinx = (K-1)/(K+1) sin alpha .

if tan A=k tan B show that sin(A+B)=((k+1)/(k-1))sin(A-B)

sum_ (k = 1) ^ (88) (- 1) ^ (k + 1) (1) / (sin ^ (2) (k + 1) ^ (@) - sin ^ (2) 1 ^ (@) ) is

If theta+phi=alpha and tan theta =k tan phi , prove that: sin alpha=(k+1)/(k-1)"sin"(theta-phi)

If k + 1 = (sec^(2)theta)(1 + sin theta) (1 - sin theta) , then find the value of k