Home
Class 12
MATHS
Let lambda=int0^1(dx)/(1+x^3),p=(lim)(n...

Let `lambda=int_0^1(dx)/(1+x^3),p=(lim)_(n->oo)[(prod_(r=1)^n(n^3+r^3))/(n^(3n))]^(-1/n)` then `ln p` is equal to (a)`ln2-1+lambda` (b) `ln2-3+3lambda` (c)`2ln2-lambda` (d) `ln4-3+3lambda`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lambda=int_0^1(dx)/(1+x^3), p=lim_(n rarr oo)[prod_(r=1)^n(n^3+r^3)/(n^(3n))]^(1//n) then ln p is equal to (a) ln2-1+lambda (b) ln2-3+3lambda (c) 2ln2-lambda (d) ln4-3+3lambda

Let lambda=int_(0)^(1)(dx)/(1+x^(3)),p=(lim)_(n rarr oo)[(prod_(r=1)^(n)(n^(3)+r^(3)))/(n^(3n))]^(-) then ln p is equal to (a)ln2-1+lambda(b)ln2-3+3 lambda(c)2ln2-lambda(d)ln4-3+3 lambda

If lim_(x rarr e^(3))((ln x-3)^(n))/(ln((cos^(m)(ln x-3))))=-1backslash(n,m in N) then (n)/(m) is equal to

If f(x)=sum_(lambda=1)^(n)(x-(5)/(lambda))(x-(4)/(lambda+1)) then lim_(n rarr oo)f(0) is equal to

If f(x)=sum_(lambda=1)^(n)(x-(5)/(lambda))(x-(4)/(lambda+1)) then lim_(n rarr oo)f(0) is equal to

(lim)_(x->0)((1^x+2^x+3^x++n^x)/n)^(1/x)\ is equal to (n\ !)\ ^n b. (n !)^(1//n) c. n ! d. "ln"(n !)

Let P(n):3^(n) =lambda then smallest value of lambda is

Evaluate : int_0^1x ln(1+2x)dx=(3I n3)/8

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda .