Home
Class 12
MATHS
Prove that the greatest value of C(2n.r)...

Prove that the greatest value of `C(2n.r)(0<=r<=2n)` is `C(2n,n) (1<=r<=n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the greatest value of .^(2n)C_(r)(0 le r le 2n) is .^(2n)C_(n) (for 1 le r le n) .

Prove that the greatest value of .^(2n)C_(r)(0 le r le 2n) is .^(2n)C_(n) (for 1 le r le n) .

Prove that the greatest value of .^(2n)C_(r)(0 le r le 2n) is .^(2n)C_(n) (for 1 le r le n) .

If a and b are the greatest values of ""^(2n)C_(r)and""^(2n-1)C_(r) respectively. Then,

If p and q are the greatest values of ""^(2n)C_(r) and ""^(2n-1)C_(r) respectively, then

If a and b are the greatest values of ""^(2n)C_(r)and""^(2n-1)C_(r) respectively. Then,

The difference between the greatest values of ""^(15)C_(r) and ""^(12) C_(r) is

If ^(n)C_(4) = ^(n)C_(12) then greatest value of ^(n)C_(r)

Write down the greatest value of ^20C_r and ^19C_r