Home
Class 10
MATHS
(1)/((x-3))-(1)/((x+5))=(1)/(6),(x!=3,-5...

`(1)/((x-3))-(1)/((x+5))=(1)/(6),(x!=3,-5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (1)/(x-3)+(1)/(x+5)=(1)/(6) .

solve for x,(1)/(x-3)-(1)/(x+5)=(1)/(6)

Solve the equation (1)/(3)(x+1)-(1)/(2)(x-1)=(5)/(6)(x+1)

((1)/(x-3)-(3)/(x(x^(2)-5x+6)))

((6)/(3x-1))=((9)/(5x-3))

Add :5x^(2)-(1)/(3)x+(5)/(2),-(1)/(2)x^(2)+(1)/(2)x-(1)/(3) and -2x^(2)+(1)/(5)x-(1)/(6)

(x-1)/(3)+(2x+5)/(6)=(3x-6)/(9)-(2x-5)/(2)

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

3((7x+1)/(5x-3))-4((5x-3)/(7x+1))=11;x!=(3)/(5),-(1)/(7)

3+(x)/(4)=(1)/(2)(4-(x)/(3))-(5)/(6)+(1)/(3)(11-(x)/(2))