Home
Class 7
MATHS
Prove that |[alpha,beta,gamma] ,[alpha^2...

Prove that `|[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]|` = `(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)`

Text Solution

Verified by Experts

`L.H.S. = |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,beta+alpha]|`
Applying `R_3->R_3+R_1`
` = |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[alpha+beta+gamma,alpha+beta+gamma,alpha+beta+gamma]|`
` =(alpha+beta+gamma) |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[1,1,1]|`
Applying `C_2->C_2-C_1 and C_3->C_3-C_1`
` =(alpha+beta+gamma) |[alpha,beta-alpha,gamma-alpha],[alpha^2,beta^2-alpha^2,gamma^2-alpha^2],[1,0,0]|`
` =(alpha+beta+gamma)(beta-alpha)(gamma-alpha) |[alpha,1,1],[alpha^2,(beta+alpha),(gamma+alpha)],[1,0,0]|`
` =(alpha+beta+gamma)(beta-alpha)(gamma-alpha) [gamma-alpha-beta-alpha]`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

Using properties of determinant prove that |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that |[[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[alpha^3,beta^3,gamma^3]]|= alpha beta gamma (alpha-beta)(beta-gamma)(gamma-alpha)

Prove that, |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Evaluate: |[alpha, beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|

Prove that |(alpha, beta, gamma),(alpha^(2), beta^(2), gamma^(2)),(beta+gamma , gamma + alpha, alpha + beta)| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha + beta + gamma) .

Using properties of determinants, prove the following |(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that: | alpha beta gamma alpha^(2)beta^(2)gamma^(2)beta+gamma gamma+alpha alpha+beta|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Consider Delta=|(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)| Show that Delta=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=|{:(alpha,beta, gamma),(alpha^(2),beta^(2),gamma^(2)),(beta+gamma,gamma+alpha, alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)