Home
Class 12
PHYSICS
Two rings are suspended from the points ...

Two rings are suspended from the points A and B on the ceiling of a room with the help of strings of length 1.2 m each as shown. The points A and B are separated from each other by a distance AB = 1.2 m. A boy standing on the floor throws a small ball so that it passes through the two rings whose diameter is slightly greater than the ball. At the moment when the boy throws the ball, his hand is at a height of 1.0 m above the floor. A stop watch which is switched on at the moment of throwing the ball reads 0.2 s when the ball passes through the first ring and 0.6 s when it passes through the second ring.

The maximum height attained by the ball above the floor is:

A

2.2 m

B

1.8 m

C

2.6 m

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Maximum height attained by the ball above the floor is `1+(u_(y)^(2))/(2g)=1+(16)/(20)=1.8m`
Promotional Banner

Similar Questions

Explore conceptually related problems

Two rings are suspended from the points A and B on the ceiling of a room with the help of strings of length 1.2 m each as shown. The points A and B are separated from each other by a distance AB = 1.2 m. A boy standing on the floor throws a small ball so that it passes through the two rings whose diameter is slightly greater than the ball. At the moment when the boy throws the ball, his hand is at a height of 1.0 m above the floor. A stop watch which is switched on at the moment of throwing the ball reads 0.2 s when the ball passes through the first ring and 0.6 s when it passes through the second ring. The ball lands on the floor at a distance:

Two rings are suspended from the points A and B on the ceiling of a room with the help of strings of length 1.2 m each as shown. The points A and B are separated from each other by a distance AB = 1.2 m. A boy standing on the floor throws a small ball so that it passes through the two rings whose diameter is slightly greater than the ball. At the moment when the boy throws the ball, his hand is at a height of 1.0 m above the floor. A stop watch which is switched on at the moment of throwing the ball reads 0.2 s when the ball passes through the first ring and 0.6 s when it passes through the second ring. The angle of projection of the ball is:

Two rings are suspended from the points A and B on the ceiling of a room with the help of strings of length 1.2 m each as shown. The points A and B are separated from each other by a distance AB = 1.2 m. A boy standing on the floor throws a small ball so that it passes through the two rings whose diameter is slightly greater than the ball. At the moment when the boy throws the ball, his hand is at a height of 1.0 m above the floor. A stop watch which is switched on at the moment of throwing the ball reads 0.2 s when the ball passes through the first ring and 0.6 s when it passes through the second ring. The projection speed of the ball is:

Two rings are suspended from the points A and B on the ceiling of a room with the help of strings of length 1.2 m each as shown. The points A and B are separated from each other by a distance AB = 1.2 m. A boy standing on the floor throws a small ball so that it passes through the two rings whose diameter is slightly greater than the ball. At the moment when the boy throws the ball, his hand is at a height of 1.0 m above the floor. A stop watch which is switched on at the moment of throwing the ball reads 0.2 s when the ball passes through the first ring and 0.6 s when it passes through the second ring. When the ball lands on the floor, the stop watch reads:

A boy stands at 39.2 m from a building and throws a ball which just passes through a window 19.6 m above the ground. Calculate the velocity of projection of the ball.

A boy playing on the roof of a 10 m high building throws a ball with a speed of 10 m//s^(-1) at an angle of 30^(@) with the horizontal. How far from the throwing point will the ball be at a height of 10 m from the ground?

Two rings of the same radius R and M are placed such that their centres coincide and their planes are perpendicular to each other, the moment of inertia of the system about an axis passing through the diameters of both rings is

If the distance of a point (x_(1),y_(1)) from each of the two straight lines, which pass through the origin of coordinates, is delta , then the two lines are given by

A line passes through two points A(2,-3,-1) and B(8,-1,2) . The coordinates of a point on this lie at distance of 14 units from a are