Home
Class 12
PHYSICS
Four uniform spheres, with masses mA=40 ...

Four uniform spheres, with masses `m_A=40 kg, m_B=35 kg , m_C=200 kg` , and `m_D` = 50 kg, have (x,y) coordinates of (0, 50 cm), (0, 0), (–80 cm, 0), and (40 cm, 0), respectively. In unit-vector notation, what is the net gravitational force on sphere B due to the other spheres?

A

`(2.6 xx 10^(-5)N)hatj`

B

`(7.1xx10^(-3)N)hatj`

C

`(3.7xx10^(-7)N)hatj`

D

`(4.9xx10^(-4) N )hatj`

Text Solution

AI Generated Solution

The correct Answer is:
To find the net gravitational force on sphere B due to the other spheres (A, C, and D), we will follow these steps: ### Step 1: Identify the positions and masses of the spheres - Sphere A: \( m_A = 40 \, \text{kg} \) at coordinates \( (0, 50 \, \text{cm}) \) - Sphere B: \( m_B = 35 \, \text{kg} \) at coordinates \( (0, 0) \) - Sphere C: \( m_C = 200 \, \text{kg} \) at coordinates \( (-80 \, \text{cm}, 0) \) - Sphere D: \( m_D = 50 \, \text{kg} \) at coordinates \( (40 \, \text{cm}, 0) \) ### Step 2: Calculate the gravitational force exerted on B by A The gravitational force \( F_{AB} \) between two masses is given by the formula: \[ F = G \frac{m_1 m_2}{r^2} \] where \( G = 6.67 \times 10^{-11} \, \text{N m}^2/\text{kg}^2 \) is the gravitational constant, \( m_1 \) and \( m_2 \) are the masses, and \( r \) is the distance between the centers of the two masses. The distance \( r_{AB} \) between A and B is: \[ r_{AB} = \sqrt{(0 - 0)^2 + (50 - 0)^2} = 0.50 \, \text{m} \] Now, calculate the force: \[ F_{AB} = G \frac{m_A m_B}{r_{AB}^2} = 6.67 \times 10^{-11} \frac{40 \times 35}{(0.50)^2} \] \[ F_{AB} = 6.67 \times 10^{-11} \frac{1400}{0.25} = 6.67 \times 10^{-11} \times 5600 = 3.74 \times 10^{-7} \, \text{N} \] The direction of this force is downward (negative y-direction), so: \[ \vec{F}_{AB} = -3.74 \times 10^{-7} \hat{j} \, \text{N} \] ### Step 3: Calculate the gravitational force exerted on B by C The distance \( r_{BC} \) between B and C is: \[ r_{BC} = \sqrt{(-80 - 0)^2 + (0 - 0)^2} = 0.80 \, \text{m} \] Now, calculate the force: \[ F_{BC} = G \frac{m_B m_C}{r_{BC}^2} = 6.67 \times 10^{-11} \frac{35 \times 200}{(0.80)^2} \] \[ F_{BC} = 6.67 \times 10^{-11} \frac{7000}{0.64} = 6.67 \times 10^{-11} \times 10937.5 = 7.30 \times 10^{-7} \, \text{N} \] The direction of this force is to the left (negative x-direction), so: \[ \vec{F}_{BC} = -7.30 \times 10^{-7} \hat{i} \, \text{N} \] ### Step 4: Calculate the gravitational force exerted on B by D The distance \( r_{BD} \) between B and D is: \[ r_{BD} = \sqrt{(40 - 0)^2 + (0 - 0)^2} = 0.40 \, \text{m} \] Now, calculate the force: \[ F_{BD} = G \frac{m_B m_D}{r_{BD}^2} = 6.67 \times 10^{-11} \frac{35 \times 50}{(0.40)^2} \] \[ F_{BD} = 6.67 \times 10^{-11} \frac{1750}{0.16} = 6.67 \times 10^{-11} \times 10937.5 = 7.30 \times 10^{-7} \, \text{N} \] The direction of this force is to the right (positive x-direction), so: \[ \vec{F}_{BD} = 7.30 \times 10^{-7} \hat{i} \, \text{N} \] ### Step 5: Calculate the net gravitational force on B Now, we can find the net force \( \vec{F}_{net} \) on sphere B by summing the forces from A, C, and D: \[ \vec{F}_{net} = \vec{F}_{AB} + \vec{F}_{BC} + \vec{F}_{BD} \] \[ \vec{F}_{net} = (-3.74 \times 10^{-7} \hat{j}) + (-7.30 \times 10^{-7} \hat{i}) + (7.30 \times 10^{-7} \hat{i}) \] \[ \vec{F}_{net} = -3.74 \times 10^{-7} \hat{j} + 0 \hat{i} \] \[ \vec{F}_{net} = -3.74 \times 10^{-7} \hat{j} \, \text{N} \] ### Final Answer The net gravitational force on sphere B due to the other spheres is: \[ \vec{F}_{net} = -3.74 \times 10^{-7} \hat{j} \, \text{N} \]

To find the net gravitational force on sphere B due to the other spheres (A, C, and D), we will follow these steps: ### Step 1: Identify the positions and masses of the spheres - Sphere A: \( m_A = 40 \, \text{kg} \) at coordinates \( (0, 50 \, \text{cm}) \) - Sphere B: \( m_B = 35 \, \text{kg} \) at coordinates \( (0, 0) \) - Sphere C: \( m_C = 200 \, \text{kg} \) at coordinates \( (-80 \, \text{cm}, 0) \) - Sphere D: \( m_D = 50 \, \text{kg} \) at coordinates \( (40 \, \text{cm}, 0) \) ...
Promotional Banner