Home
Class 12
PHYSICS
Consider an ideal gas confined in an iso...

Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increase as `V^q`, where V is the volume of the gas. The value of q is : `(gamma=(C_p)/(C_v))`

A

`(3 gamma + 5)/6`

B

`(3 gamma - 5)/6`

C

`(gamma + 1)/2`

D

`(gamma - 1)/2`

Text Solution

Verified by Experts

The correct Answer is:
C

`tau=(lambda)/(V_(ms))=(1)/(sqrt(2)pid^2(N/V)sqrt((3RT)/(M)))" ""…………….."(i)`
`tau propto (V)/(sqrt(T))" ""……………."(ii)`
`TV^(gamma-1)=k" ""…………."(iii) implies tau propto V^((gamma+1)/(2))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

For an ideal gas C_(p) and C_(v) are related as

The temperature of an ideal gas undergoing adiabatic expansion varies with volume as T prop V^(-(3)/(4)) , then the value of (C_(P))/(C_(V)) for the gas is

A diatomic ideal gas is used in a Carnot engine as theworking substance. If during the adiabatic expansion part of the cycle the volume of the gas increases from V to 32 V, the efficiency of the engine is

A diatomic ideal gas is used in a Carnot engine as the working substance. If during the adiabatic expansion part of the cycle the volume of the gas increase from V to 32V, the efficenecy of the engine is

A monoatomic ideal gas is used in a carnot engine as the working substance. If during the adiabatic expansion the volume of the gas increases from (V)/(8) to V, the efficiency of the engine is

Certain amount of an ideal gas is contained in a closed vessel. The vessel is moving with a constant velcity v . The molecular mass of gas is M . The rise in temperature of the gas when the vessel is suddenly stopped is (gamma C_(P) // C_(V))