Home
Class 12
PHYSICS
When a particle is mass m moves on the x...

When a particle is mass `m` moves on the `x-` axis in a potential of the from `V(x) = kx^(2)`, it performs simple harmonic motion. The corresponding thime periond is proportional to `sqrt((m)/(k))`, as can be seen easily asing dimensional analysis. However, the motion of a pariticle can be periodic even when its potential enem increases on both sides `x = 0` in a way different from `kx^(2)` and its total energy is such that the particel does not escape to infinity. consider a particle of mass `m` moving onthe `x-`axis . Its potential energy is `V(x) = omega (alpha gt 0`) for `|x|` near the origin and becomes a constant equal to `V_(0)` for `|x| ge X_(0)` (see figure)

If the total energy of the particle is `E`, it will perform is periodic motion why if :

A

Elt0

B

Egt0

C

`V_(0)gtEgt0`

D

`E.V_(0)`

Text Solution

Verified by Experts

The correct Answer is:
C

Energy must be less than `V_(0)`,so that KE becomes zero before PE becomes maximum and particle returns back.
Promotional Banner