Home
Class 12
MATHS
Prove that 2sin^(- 1)x=sin^(- 1)[2xsqrt(...

Prove that `2sin^(- 1)x=sin^(- 1)[2xsqrt(1-x^2)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Prove that, 2 sin^(-1)x = sin^(-1) (2x sqrt (1-x^2))

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx

Prove 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

Prove that : sin^(-1)x+sin^(-1)y=sin^(-1)(xsqrt(1-y^2)+ysqrt(1-x^2))

The value of x for which 2 sin^(-1)x =sin^(-1)(2xsqrt(1-x^(2))) is

Solve the equation 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]