Home
Class 7
MATHS
|[1,omega,omega^2] , [omega, omega^2,1] ...

`|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

if omega be the cube root of unit then what is the value of |[1,omega ,omega^2],[omega, omega^2,1],[omega^2,1,omega ]| ?

If omega is a complex cube root of unity then a root of the equation |[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]|=0 is

Evaluate the following determinants. [[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]]

Solve the following : [[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]] =0

If omega is a complex cube root of unity, show that [[1 , omega, omega^2], [ omega, omega^2, 1],[ omega^2, 1, omega]] [[1],[ omega],[ omega^2]]=[[0],[ 0],[ 0]]

Let omega be the complex number cos(2pi/3)+isin(2pi/3) Then the number of distinct complex numbers z satisfying abs[[z+1,omega,omega^2],[omega,(z+omega^2),1],[omega^2,1 ,z+omega]]=0 is equals to

Let omega be the complex number cos (2 pi)/(3)+i sin (2 pi)/(3) . Then the number of distinct complex number z satisfying [[z+1,omega,omega^(2)],[omega,z+omega^2,1],[omega^(2),1,z+omega]] = 0 is equal to

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]

Find the value of : |(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)|

If omega is complex cube root of 1 then S.T [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)]=0