Home
Class 11
MATHS
Itis given that complex numbers z1 and z...

Itis given that complex numbers `z_1` and `z_2` satisfy `|z_1|=2` and `|z_2|=3` If the included angle is `60^@` then `(z_1+z_2)/(z_1-z_2)` can be expressed as `sqrt N/7` where `N =`

Promotional Banner

Similar Questions

Explore conceptually related problems

It is given that complex numbers z_1 and z_2 satisfy |z_1| =2 and |z_2| =3 . If the included angle of their corresponding vectors is 60^@ , then |(z_1+z_2)/(z_1-z_2)| can be expressed as sqrtn/sqrt7 , where 'n' is a natural number then n=

It is given that complex numbers z_1 and z_2 satisfy |z_1|=2 and |z_2|=3. If the included angled of their corresponding vectors is 60^0 , then find the value of |(z_1+z_2)/(z_1-z_2)| .

It is given that complex numbers z_1 and z_2 satisfy |z_1|=2 and |z_2|=3. If the included angled of their corresponding vectors is 60^0 , then find the value of 19|(z_1-z_2)/(z_1+z_2)|^2 .

It is given that complex numbers z_1a n dz_2s a t i sfy|z_1|2a n d|z_2|=3. If the included angled of their corresponding vectors is 60^0 , then find the value of |(z_1+z_2)/(z_1-z_2)| .

It is given that complex numbers z_1a n dz_2s a t i sfy|z_1|=22a n d|z_2|=3. If the included angled of their corresponding vectors is 60^0 , then find the value of |(z_1+z_2)/(z_1-z_2)| .

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

It is given the complex numbers z_(1) and z_(2) , |z_(1)| =2 and |z_(2)| =3 . If the included angle of their corresponding vectors is 60^(@) , then find value of |(z_(1) +z_(2))/(z_(1) -z_(2))|

It is given the complex numbers z_(1) and z_(2) , |z_(1)| =2 and |z_(2)| =3 . If the included angle of their corresponding vectors is 60^(@) , then find value of |(z_(1) +z_(2))/(z_(1) -z_(2))|