Home
Class 12
MATHS
f(x)=2x^(3)+x^(2)-4x" and "-sqrt(2)<c<sq...

f(x)=2x^(3)+x^(2)-4x" and "-sqrt(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The constant c of Rolle's theorem for the function f(x)=2x^3+x^2-4x-2 in [-sqrt2,sqrt2] is

Verify Rolle's theorem for the function f(x) = 2x^(3) + x^(2) - 4x - 2 in the interval [-(1)/(2) , sqrt2] .

Verify Rolle's theorem for the function f(x) = 2x^(3) + x^(2) - 4x - 2 in the interval [-(1)/(2) , sqrt2] .

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

If f(x)=sqrt(x^(2)-4x+4)+6sqrt(x^(2)) is minimum then the number of values of x is:

If f(x) = 2x^(3)-3x^(2)+ 4x - 2 , find the value of f'(-2) .

f(x)=sqrt(4x-x^(2)-3)

Given: f(x)=4x^(3)-6x^(2)cos2a+3x sin2a sin6a+sqrt(In(2a-a^(2))) then

If f(x)=x^(3)+(1)/(x^(3))-4(x^(2)+(1)/(x^(2)))+13 then the value of f(2+sqrt(3))=