Home
Class 12
MATHS
"cos"pi/7+"cos"(2pi)/7+"cos"(3pi)/7+"cos...

`"cos"pi/7+"cos"(2pi)/7+"cos"(3pi)/7+"cos"(4pi)/7+"cos"(5pi)/7+"cos"(6pi)/7 =`

A

0

B

`3/2`

C

`3/4`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TS EAMCET 2018 (7 MAY SHIFT 1)

    TS EAMCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|80 Videos
  • TS EAMCET 2019 (3 MAY SHIFT 2)

    TS EAMCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|80 Videos

Similar Questions

Explore conceptually related problems

Show that "cos"(pi)/65"cos"(2pi)/65"cos"(4pi)/65"cos"(8pi)/65"cos"(16pi)/65"cos"(32pi)/65=1/64

{:(,"Column-I",,"Column-II"),((A),cos 20^(0) + cos 80^(0) - sqrt(3) "cos" 50^(0),(p),-1),((B),cos 0^(0) + "cos" (pi)/(7) + "cos" (2pi)/(7) + "cos" (4pi)/(7) + "cos" (5pi)/(7) + "cos" (6 pi)/(7),(q),-(3)/(4)),((C),cos 20^(0) + cos 40^(0) + cos 60^(0) - 4 cos 10^(0) "cos" 20^(0)"cos" 30^(0),(r),1),((D),"cos" 20^(0) cos 100^(0) + cos 100^(0) "cos" 140^(0) - cos 140^(0) "cos" 200^(0),(s),0):}

Knowledge Check

  • "cos" (2pi)/(7)+"cos" (4pi)/(7)+"cos"(6pi)/(7)=

    A
    `(1)/(2)`
    B
    `-(1)/(2)`
    C
    0
    D
    1
  • If "cos"(pi)/(15) "cos"(2pi)/(15) "cos"(4pi)/(15) "cos"(5pi)/(15) "cos"(7pi)/(15) "cos"(30pi)/(15) =x, " then " (1)/(8x) =

    A
    4
    B
    `(1)/(4)`
    C
    8
    D
    `(4)/(3)`
  • cos""(2pi)/(15) cos ""(4pi)/(15)""cos(8pi)/(15) cos""(16pi)/(15)=

    A
    `1//4`
    B
    `1//8`
    C
    `1//16`
    D
    `1//32`
  • Similar Questions

    Explore conceptually related problems

    Suppose cos""(2pi)/7+ cos""(4pi)/7 + cos""(6pi)/7 =-1/2 and cos""(2pi)/7cos""(4pi)/7cos""(6pi)/7=1/8 , then the numerical value of "cosec"^(2)(pi)/7 + "cosec"^(2)(2pi)/7+ "cosec"^2(3pi)/7 must be

    Suppose "cos" (2pi)/(7) + "cos" (4pi)/(7) + "cos" (6pi)/(7) = - (1)/(2) and "cos" (2pi)/(7) "cos"(4pi)/(7) "cos" (6pi)/(7) = - (1)/(8) , then the numerical value of "cosec"^(2) (pi)/(7) + "cosec"^(2)(2pi)/(7) + "cosec"^(2) (3pi)/(7) must be

    Prove that 2 "cos"(pi)/13"cos"(9pi)/13+"cos"(3pi)/13+"cos"(5pi)/13=0

    "Cos"(2pi)/15."Cos"(4pi)/15."Cos"(8pi)/15."Cos"(14pi)/15=

    cos (pi/7) cos ((2pi)/(7) ) cos ( (4pi )/(7) ) =