Home
Class 12
MATHS
sin cos^(1) tan(sec^(-1)x)=sqrt(2-x^2)...

`sin cos^(1) tan(sec^(-1)x)=sqrt(2-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x) is/are

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x)is/are

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x) is/are ____

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos [tan^(-1) (cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))